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Quantum physics (QP) is meant as a whole science having both theoretical and 
experimental parts. The subjects of these parts in any science are entirely 
different. The experimental part deals with really existing particular objects 
(concrete objects), whereas the theoretical part refers to the so-called abstract 
objects which are used in our considerations only. The necessity of a strict 
distinction between concrete and abstract objects is a crucial key methodological 
principle (KMP). This principle allows one to construct the science of probabil- 
ity (probabilistics) whose theoretical and experimental parts are, respectively, 
probability theory and experimental statistics. Probabilistics suggests two meth- 
ods of solving probabilistic problems: the classical method and the quantum 
approach. The application of probabilistics to physics leads to probabilistic 
physics, whose two interconnected particular domains, classical statistical 
physics (CSP) and QP, result, respectively, from the treatment of macrosystems 
by the classical method and of microsystems by the quantum approach. The 
mathematical peculiarities of QP stem from the pertinent ones in probabilistics 
itself. Having been constructed as a particular domain of probabilistic physics, 
QP needs no artificial interpretation. Many quantum-related issues and para- 
doxes are thereby easily settled. 

1. I N T R O D U C T I O N  

In what follows quantum physics (QP) is meant as a whole science 
having both theoretical and experimental parts. The theoretical part of QP 
needs no artificial interpretation, for its subject matter is determined by the 
science itself--it deals with probabilistic considerations. The experimental 
part of QP involves the accumulation of experimental statistical data, in 
particular, by measuring values of pertinent quantities. Thus, measure- 
ments belong to the experimental part of QP, not to its theoretical part. 

t22 Lessey St., Apt. 616, Amherst, Massachusetts 01002. 

31 

0020-7748/94/0100-0031507.00/0 �9 1994 Plenum Publishing Corporation 



32 Mayants 

A point of extreme importance is that the theoretical and experimental 
parts of any science (QP included) refer to entirely different, though tightly 
interconnected, subjects. The subjects of the experimental part are really 
existing particular objects on which experiments are carried out. They have 
been called by me concrete objects. The subjects of the theoretical part are 
meant to be devoid of the individual features that distinguish concrete 
objects from each other but are unessential in theoretical considerations. I 
have named them abstract objects (Mayants, 1973, 1984). Thus, concrete 
objects are ones we actually deal with in practice, whereas abstract objects 
are those we use in our considerations only. The necessity of a strict 
distinction between concrete objects and abstract objects, in order to avoid 
any misunderstanding and confusion, is a crucial key methodological princi- 
ple (KMP). This principle has made it possible to construct the science of 
probability (probabilistics), whose theoretical and experimental parts are, 
respectively, probability theory and experimental statistics. In probabilistics 
the notion of probability is defined explicitly, and the interconnection 
between its two parts reveals itself, in particular, in an approximate 
equality of probabilities and pertinent experimental statistical frequencies 
at large enough number of random tests. 

A mere application of probabilistics to physics leads to a science which 
I have called probabilistic physics, whose two particular interconnected 
domains are classical statistical physics (CSP) and QP. A straightforward 
construction of QP (and CSP) can thus be represented as: 

CSP 
/ 

KMP ~ Probabilistics ~ Probabilistic physics 
\ 

QP 

Such way of constructing QP (as a whole science) eliminates many 
misunderstandings, misconceptions, paradoxes, etc., known to abound in 
conventional quantum physics. 

2. KMP 

The concept of concrete objects is a primary one which cannot be 
reduced to any simpler concepts. It refers to fully determined, really 
existing objects--the subjects of experimentation, in particular. 

Consider a certain set A of concrete objects a such that a eA if and 
only if it has the value fo = f  of the property to. We assume that elements 
of A have a set T = {to, tl . . . . .  t~ } of properties, and each property t~ has 
a set 0; of values f,., one and only one value f E 0; corresponding to every 
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concrete object a cA (to has only one value f for all a cA). Hence, different 
concrete objects differ in the values of at least one of their properties. 

Any subset t0....k = (t~, tj . . . . .  tk) - T (0 < i < j  < .  �9 �9 < k -< n) is also a 
property (combined), which has a set 0u... k of  values f0...k = ( f , f j  . . . . .  fk) 
where f~ c0~, fj ~ 0j . . . . .  fk ~ 0k. Let us divide A into classes, in accordance 
with the values of every property tv... k. The class A(f0....k ) corresponding to 
fj..k contains all those a c A  which have the values f t , f j  . . . . .  fk of the 
properties ti, tj . . . . .  t~,, respectively. In particular, the class A ( f ) =  A 
contains all a cA. The following equation is evident: 

A(fq...k) = U A(fo...klm...p) (1 )  
O lm...p 

where Otm...p is a set of values ftm...p = (ft,fm, �9 �9 �9 ,fp) of the property tlm...p 
with f t  cOt, fm cO . . . . . .  fp sop. 

0.j. k and the set A(to...k) of the classes A(f,j...k) are in one-to-one 
correspondence. Let us map the set [,Jq...k A(tq...k), i > O, of all the classes 
onto the set 0 = U0...k Oij...k, i > O, of all the values of the properties of  
concrete objects of A. Then f,j...k is the image of  the class A(fj...k) --~ A, and, 
in particular, f is the image of the whole set A. This fact allows us to 
introduce a strict definition of  abstract objects. 

Definition I. Abstract objects are elements of the set 0. 

Thus f0...k, the image of the class h(fij...k), is the abstract object 
corresponding to this class of  concrete objects. Only definite values of  some 
of the properties of concrete objects of A refer to every abstract object, the 
enumeration of which fully determines the abstract object both in essence 
and name. 

Concrete objects and abstract objects, though being of different na- 
ture, may have similar names. This fact often causes confusion--a  mixup 
of concrete and abstract objects--which, in turn, leads to misunderstand- 
ings, paradoxes, etc. Hence the necessity to distinguish strictly between 
concrete objects and abstract objects, which is the above KMP. Note also 
that questions which may be asked about concrete objects and abstract 
objects are entirely different. Questions about exact values of properties of 
a concrete object are legitimate in principle, for a concrete object does have 
them. But questions concerning exact values of properties of an abstract 
object, which do not appear in its designation (its name), are irrelevant in 
principle. The only questions one may ask should refer to the distributions 
of those values for the class whose image the abstract object is. The related 
problems belong to probabilisties. 
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3. PROBABILISTICS 

Consider in the class A(f~j...k) ~-- A the subset 

A ' ( f , j . . . , ;  = 

We suppose that all se ts  A'(fq...k',O~m...p ) are measurable (L). The problem 
of  finding their measures can be solved in some particular cases in many 
ways. There is, however, one general experimental way which allows one to 
do so, first, with an accuracy to an unknown factor and, second, merely 
approximately. This procedure, connected with the notion of  "accident," 
can be called the statistical method. 

The essence of  the method is that a set A of  concrete objects is 
subjected to a large number of  random tests, that is, tests by which some 
concrete object of  A is revealed accidentally. Then a general experimental 
observation is used, which follows from a huge body of  statistical data 
accumulated in experimental statistics and represents, hence, the basic 
phenomenon of probabilistics. This observation is taken as the primary 
principal premise of  probabilistics, which reads: 

Axiom 1. I f  a very large number of  random tests is made, the number 
of  tests revealing concrete objects of  each subset of  a set A is approximately 
proportional to the measure of  this subset. 

In Order for this axiom to be applicable, the tests must really be of  a 
random nature, that is, they must actually lead to accidental results. 

Thus it is precisely the randomness of  tests that is essential to the 
statistical method, for it ensures the possibility of  an experimental determi- 
nation of  the ratios between the measures of  subsets of  the set A. But these 
ratios themselves are quite definite quantitative characteristics of  the struc- 
ture of  the set A and bear no relation to randomness. 

Using the statistical method, one cannot predict, o f  course, the results 
of  each separate random test. But if the ratio of  the measure (mA') of  some 
subset A ' c  A to the measure (mA) of  the set A is near unity, one can 
suppose with great confidence that as a result of  a single random test just 
one of  the concrete objects a cA '  will be revealed. The larger mA'/mA, the 
greater this confidence, which brings us right to the definition of probability 
as the degree of  confidence in the correctness of  the assumption that a 
single random test made on a set A of  cow,crete objects will reveal some 
concrete object of  the subset A ' c  A, which can be estimated by the ratio 
mA'/mA. Although probability in the indicated sense has a subjective 
implication, this ratio is an objective quantitative characteristic of  the 
structure of  the set A. 
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At the same time, with a sufficiently large number of  random tests, the 
statistical frequency of  revealing concrete objects of  A' must also be 
approximately equal to mA' /mA.  Hence, the above probability approxi- 
mately coincides numerically with the pertinent frequency (often called 
statistical probability). This allows us to give an explicit (preliminary) 
definition of  probability. 

Recall, first, that mA'  is the measure of  the set of  concrete objects, 
which corresponds to the abstract object f " h a v i n g "  the set 0~2 .... of  values 
of  the property t12 ..... and mA is the measure of  the whole set A of concrete 
objects, which corresponds to the abstract object f itself. Further, any class 
A(f~j...k) can be taken as a new initial set of  concrete objects, since the 
property t~...k has one definite value fi...k only on the whole class. In view of  
this, probability as an objective quantitative characteristic of  the structure of  
the set A(f~...k) can be defined as follows. 

Definition 2. The probability that for the abstract object f~j...k a value 
fJm...p of the property ttm...p belongs to the set O;m...p ~- Ozm...p is the ratio of  the 
measure of  A'(f.j...k ; O~m...p) to the measure of  A(fij...k). 

Using this definition, one need not distinguish absolute from condi- 
tional probabilities. According to Definition 2, probability concerns ab- 
stract objects and bears no relation to accident. However, raising 
probabilistic problems itself makes sense only when there exists the possi- 
bility of  revealing some concrete object of  a set A by carrying out a random 
test. Usually one talks about  the probability of  some random event. It can 
be shown, however, that Definition 2 conforms fully to ordinary usage 
(Mayants,  1973, 1984). 

Definition 2 is only valid when A is given and measure (L) can be 
introduced in it. But in most cases to which probabilistics applies neither 
supposition is fulfilled. Only the set T of  properties (together with their 
values) and, hence, also the set 0 of  abstract objects are always given. Thus, 
a general definition is needed covering any experimentally verifiable case. 
This has been done by introducing statistically adequate sets (Mayants,  
1973, 1984). The point is that the initial set A can be replaced by a 
measurable (L) concrete set A (a) which is adequate to it (Mayants, t973, 
1984). Then the specificity- of  probabilistics allows one to formulate its 
second (and last) axiom. 

Axiom Z For any set A of concrete objects which can be subjected to 
random tests there exists at least one set A(a) which is adequate to it. 

With this axiom in mind, the general definition of  probability can 
finally be put as follows. 
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Definition 2a. The probabili ty that for the abstract object fj...k a value 
f/m...p of  the property ttm...p belongs to the set O~m...p ~-- Otm...p is the ratio of the 
measure of  A (a)tr('~ �9 O~'...p) to the measure of A (a)[c(a) ~ where A (") is I, Jij...k , ~,J ij...k], 
any set adequate to A. 

Denoting this probability by P(fj . . .k;  O~m...p), Definition 2a can be 
presented as 

e( f i j . . . k  "~ O~m...p) = m h  t ( A . .  k ; O~m...p) / m A (  fq. . .k) ( 2 )  

[For the sake of simplicity the upper indices a in (2) are omitted, but they 
are implied.] If  A is given and measurable (L), Axiom 2 is satisfied, 
Definitions 2a and 2 coinciding. If  O~m...p = Otm...p, then from (2), in view of 
(1), it follows that 

P(f i j . . . k ;  OIm...p) = 1 (3) 

Due to the well-known features of measure (L), all the usual properties 
of  probability and the conventional calculation methods follow from (2). 

In probabilistics a unidimensional random variable is defined 
as a property t t e T  whose values are real numbers. A property 
ttm...p =(t t ,  tm . . . . .  tp), formed of  k unidimensional random variables 
tt, t i n , . . . ,  tp, is called a k-dimensional  random variable. If  values of a 
random variable are ~P(ft, f , ,  . . . . .  fp), w h e r e f l , f m , . . .  ,fp are values of  the 
respective random variables, we denote it by r t i n , . . . ,  tp) and call it a 
funct ion o f  random variables. "Randomness" of a random variable, of 
course, reveals itself when it undergoes random tests only. 

The notion of state, widely used in physics, can be introduced immedi- 
ately into probabilistics. We shall say that an abstract object f/j...k is the 
abstract object f i n  a state determined by the value f~j...k of  the property tu... k 
(the state is also denoted by fj...k). The function 

F(fq.. .k; XI, X . . . . . .  Xp) = P(fq. . .k; f t  <- xl, fm <- X . . . . . .  fp  <- Xp) 

will be called the distribution funct ion of the random variable ttm..., for the 
state fj...k" If  there exists a nonnegative function P(fj.. .k ; Xt, X . . . . . .  Xp) 
such that for any domain O~m...p ~-- Ot, n...p the equality 

P(fy...k ; O;m...p) = ~ P(fo...k ; xl,  x . . . . . .  xp) & (4) 
3o [m...p 

is satisfied (dz = dxt dxm �9 " " dxp), we call it the probabili ty density of the 
random variable tt,,...p for the state f~j...k. From (3) it follows that 

~r p(f~j...k; x~, x . . . . . .  x~) = 1 (5) 

where F = Otm...p. 
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In the most general case the probability distribution of a random 
variable hm...p for the state f~..., is determined by the pertinent distribution 
function. We shall say that a mathematical quantity x describes the state 
f0...k with respect to the random variable ttm...p if X uniquely determines 
F(f j . . .k  ; Xt, x . . . . .  , Xp). It is evident that if Kl describes a certain state and 
x2 uniquely determines icl, then ~2 also describes this state. 

One can describe a state f~'...k with respect to a random variable hm...p 
by the probability density or by the well-known characteristic funct ion ,  for 
both uniquely determine the distribution function. There may be other 
mathematical quantities for describing states, but of special interest and 
importance are the following two: state vector r  density operator lg," (in 
what follows the state designation fj...k is omitted). 

The state vector is introduced, proceeding from the fact that the 
function 

~ / ( X t ,  . . . , X p )  = p l / 2 ( X t ,  . . . , X p ) e  i n ( x t  . . . . .  X p )  (6) 

where ~/is any real function, uniquely determines p(xt  . . . . .  xp), and hence 
also describes the state with respect to the random variable tL.p. Further, the 
mathematical expectation of  some function cp(tt) of a random variable h, 

j~  cp(x, )p(xt ,  . . . , Xp) dz (7) Mq~(tt ) 

can be represented, in view of (6), as 

f r f r  ' ' * 
Mq~(h) = , q~(x; ) 5(z" - z) O ( x t , . . . ,  x p ) $  (xt, �9 �9 �9 Xp) dz" dz (8) 

and then rewritten as 

Mqo(t, ) = (cp(~)~/, •) (9) 

where ~ is the operator corresponding to the random variable h, and r 
a vector. Then (5) yields 

(r  0)  = 1 ( 1 0 )  

which means that ~ is normalized to unity. Since the spectrum of 
coincides with the set Ot whose elements are real numbers (by definition), 
is a Hermitian operator. The vector ~ uniquely determines the function 
~h(x~ . . . . .  xp), representing it in the basis of eigenvectors of the Hermitian 
operators tl . . . . .  t'p. Hence, it also describes the state with respect to the 
random variable tt,,.., p. 

To the vector ~ there can be assigned the operator 14 z = l~(t,...,p), 
whose kernel in the x representation has the form 

W ( x t  . . . .  , xp ; x l  . . . . .  Xp) = ~O(xt . . . . .  xp)qt (x t  . . . . .  Xp) (11) 
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Since the operator I~ uniquely determines p(x t  . . . . .  xp),  for in the x 
representation W ( x t ,  . . . , Xp; x l ,  . . . .  Xp) = p (x t  . . . .  , Xp), it describes, too, 
the state with respect to the random variable tL. p. Now (8) can be rewritten 
as  

M~o(t, ) = Tr[cp(~ ) if'] (12) 

with Tr I~ = 1. 
Introduction of a state vector or a density operator for the description 

of a state entails the introduction of a Hermitian operator for every 
random variable. It follows from (9) that an eigenvector of the operator ~, 
which corresponds to its eigenvalue a e0~, describes a state, for which the 
random variable tt has a definite value ft = ~. 

One of the tasks of probabilistics is solving probabilistic problems. 
The solution of ordinary probabilistic problems requires generaUy the 
construction of a set adequate to the set of concrete objects under consid- 
eration. This way has been called by me the classical  method .  But this 
method is inapplicable to many problems in physics. There is, however, 
another method which I have named the q u a n tum  approach.  When employ- 
ing it, a state of an abstract object is described with respect to some 
random variable by a state v~ctor or density operator defined in the 
corresponding space. It should be emphasized that both me thods  be long  to 

probabi l i s t ics  i t s e l f  (Mayants, 1973, 1977, 1984), but their application in 
physics is of a special interest. 

4. PROBABILISTIC PHYSICS 

Probabillistic physics deals with the probabilistic treatment of physical 
systems. Various separate disciplines, such as CSP, QP, statistical hydrody- 
namics, kinetics of physical and chemical processes, etc., are thus particular 
domains of probabilistic physics. In probabilistic physics concrete objects 
and abstract objects are, respectively, concrete physical systems and ab- 
stract physical systems. Properties of objects are, in particular, various 
physical quantities, including coordinates and time. Since values of these 
quantities are real numbers, physical quantities prove to be random vari- 
ables by definition. A state of an abstract physical system is determined by 
definite values of certain physical quantities and can be described in any of 
the above ways. 

One of the main tasks of probabilistic physics is solving pertinent 
probabilistic problems. Different domains of it may require different ways 
of doing this. The classical method and the quantum approach are of 
immediate interest to us now. The starting point of the former is the 
construction of a set A ~) adequate to the corresponding set A of concrete 
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physical systems. This method was actually used by Gibbs in constructing 
classical statistical mechanics (ensemble method). The starting point of the 
latter is finding Hermitian operators for various physical quantities and 
calculating their eigenvectors and eigenvalues. 

It follows from all the statistical experiments we know that the 
classical method is suitable for "classical" systems consisting of particles of 
large enough mass, whereas it is unsuitable for "microsystems." We find 
that the quantum approach alone works for microsystems, but it should 
also be applicable to classical systems. Since the operators for random 
variables are the same for both cases, quantum mechanical probability 
distributions must go over into the corresponding classical statistical prob- 
ability distributions when passing from the former to the latter. Whenever 
this assertion can be checked, it proves true (Mayants, 1973, 1977, 1984), 
which means that the "classical" limit of QP is CSP. 

5. CSP, QP 

The application of the classical method to a closed classical mechanical 
system immediately leads to Gibbs' microcanonical distribution. When using 
the quantum approach we arrive at QP. The operators for coordinates and 
momenta can easily be chosen, E = ih ~/~t corresponding to energy. The form 
of the operator/ t  for the Hamiltonian function depends on the physical sys- 
tem. In a probabilistic treatment of a mechanical system, the equality E = H 
for a concrete conservative system should be replaced by the equality of the 
mathematical expectations of the random variables E and H, which is 

( / ~ ,  ~) = L(/td?, , )  (13) 

But (13) is satisfied if 

/1~ = E'~ (14) 

is valid, which is the Schr6dinger equation. 
This article is a brief review intended to give some idea of how QP as 

a whole science logically emerges from KMP. A more detailed exposition 
can be found elsewhere (Mayants, 1984). A realistic explanation of wave- 
corpuscle duality (Mayants, 1989) and of the experimental failure of Bell's 
inequalities (Mayants, 1991) may also be of interest to many. 
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